Semiconductor Device Fundamentals by Robert Pierret (1995, Hardcover)

Tbargainbooks (5549)
96.5% positive feedback
Price:
US $35.18
ApproximatelyAU $54.95
+ $35.46 postage
Estimated delivery Thu, 22 May - Mon, 2 Jun
Returns:
30-day returns. Buyer pays for return postage. If you use an eBay postage label, it will be deducted from your refund amount. Policy depends on postage service.
Condition:
Brand new

About this product

Product Information

Although roughly a half-century old, the field of study associated with semiconductor devices continues to be dynamic and exciting. New and improved devices are being developed at an almost frantic pace. While the number of devices in complex integrated circuits increases and the size of chips decreases, semiconductor properties are now being engineered to fit design specifications. Semiconductor Device Fundamentals serves as an excellent introduction to this fascinating field. Based in part on the Modular Series on Solid State Devices, this textbook explains the basic terminology, models, properties, and concepts associated with semiconductors and semiconductor devices. The book provides detailed insight into the internal workings of "building block" device structures and systematically develops the analytical tools needed to solve practical device problems.

Product Identifiers

PublisherPearson Education, Prentice Hall PTR
ISBN-100201543931
ISBN-139780201543933
eBay Product ID (ePID)62594

Product Key Features

Number of Pages816 Pages
Publication NameSemiconductor Device Fundamentals
LanguageEnglish
SubjectElectronics / Semiconductors, Electronics / General
Publication Year1995
TypeTextbook
AuthorRobert Pierret
Subject AreaTechnology & Engineering
FormatHardcover

Dimensions

Item Height2.2 in
Item Weight61.2 Oz
Item Length9.6 in
Item Width8 in

Additional Product Features

Intended AudienceCollege Audience
LCCN95-017387
Dewey Edition22
IllustratedYes
Dewey Decimal537.622
Lc Classification NumberTk7871.85.P484 1996
Table of ContentI. SEMICONDUCTOR FUNDAMENTALS. 1. Semiconductors -- A General Introduction. General Material Properties. Crystal Structure. Crystal Growth. 2. Carrier Modeling. The Quantization Concept. Semiconductor Models. Carrier Properties. State and Carrier Distributions. Equilibrium Carrier Concentrations. 3. Carrier Action. Drift. Diffusion. Recombination -- Generation. Equations of State. Supplemental Concepts. 4. Basics of Device Fabrication. Fabrication Processes. Device Fabrication Examples. R1. Part I Supplement and Review. Alternative/Supplemental Reading List. Figure Sources/Cited References. Review List of Terms. Part I Review Problem Sets and Answers. IIA. PN JUNCTION DIODES. 5. PN Junction Electrostatics. Preliminaries. Quantitative Electrostatic Relationships. 6. PN Junction Diode -- I-V Characteristics. The Ideal Diode Equation. Deviations from the Ideal. Special Considerations. 7. PN Junction Diode -- Small-Signal Admittance. Introduction. Reverse-Bias Junction Capacitance. Forward-Bias Diffusion Admittance. 8. PN Junction Diode -- Transient Response. Turn-Off Transient. Turn-On Transient. 9. Optoelectronic Diodes. Introduction. Photodiodes. Solar Cells. LEDs. IIB. BJTS AND OTHER JUNCTION DEVICES. 10. BJT Fundamentals. Terminology. Fabrication. Electrostatics. Introductory Operational Considerations. Performance Parameters. 11. BJT Static Characteristics. Ideal Transistor Analysis. Deviations from the Ideal. Modern BJT Structures. 12. BJT Dynamic Response Modeling. Equivalent Circuits. Transient (Switching) Response. 13. PNPN Devices. Silicon Controlled Rectifier (SCR). SCR Operational Theory. Practical Turn-on/Turn-off Considerations. Other PNPN Devices. 14. MS Contacts and Schottky Diodes. Ideal MS Contacts. Schottky Diode. Practical Contact Considerations. R2. Part II Supplement and Review. Alternative/Supplemental Reading List. Figure Sources/Cited References. Review List of Terms. Part II Review Problem Sets and Answers. III. FIELD EFFECT DEVICES. 15. Field Effect Introduction -- the J-FET and MESFET. General Introduction. J-FET. MESFET. 16. MOS Fundamentals. Ideal Structure Definition. Electrostatics -- Mostly Qualitative. Electrostatics -- Quantitative Formulation. Capacitance-Voltage Characteristics. 17. MOSFETs -- The Essentials. Qualitative Theory of Operation. Quantitative ID - VD Relationships. ac Response. 18. Nonideal MOS. Metal-Semiconductor Workfunction Difference. Oxide Charges. MOSFET Threshold Considerations. 19. Modern FET Structures. Small Dimension Effects. Select Structure Survey. R3. Part III Supplement and Review. Alternative/Supplemental Reading List. Figure Sources/Cited References. Review List of Terms. Part III Review Problem Sets and Answers. Appendix A. Elements of Quantum Mechanics. Appendix B. MOS Semiconductor Electrostatics -- Exact Solution. Appendix C. MOS C-V Supplement. Appendix D. MOS I-Vsupplement. Appendix E. List of Symbols. Appendix M. MATLAB Program Script.

All listings for this product

Buy It Now
Any condition
New
Pre-owned

Ratings and reviews

4.7
3 product ratings
  • 2 users rated this 5 out of 5 stars
  • 1 users rated this 4 out of 5 stars
  • 0 users rated this 3 out of 5 stars
  • 0 users rated this 2 out of 5 stars
  • 0 users rated this 1 out of 5 stars

Would recommend

Good value

Compelling content

Most relevant reviews